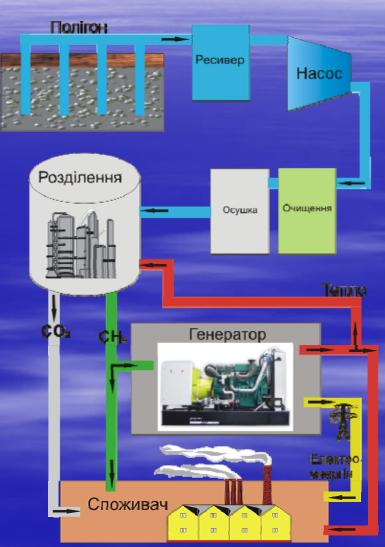


Практика использования биогаза свалок для производства электроэнергии и газа

АВТОРЫ: А.И. Пятничко, Г.В. Жук, В.Е.Баннов, С.Б.Кубенко

Докладчик: зав.отд., д.т.н. Г.В. Жук

Институт газа НАН Украины, г. Киев, Украина.


Добыча и утилизация биогаза

Система добычи и утилизации включает в себя:

❖сеть вертикальных газодренажных скважин, соединенных линиями газопроводов

◆систему транспортировки газа, его очистки и сепарации

◆систему переработки БГС в тепловую или электроэнергию

Энергетический потенциал биогаза в Украине, 2007 г. (Министерство аграрной политики)

Вид біогазу	Теоретич- ний потенціал, млн. т у.п.	Коефіцієнт технічної доступності	Технічний потенціал, млн. т у.п.	Коефіцієнт практичного використання	Економічний потенціал, млн. т у.п.
Біогаз з відходів тваринництва	3,27	0,7	2,45	0,3	0,76
Біогаз з твердих побутових відходів	0,77	0,6	0,46	0,6	0,28
Біогаз з осадів станцій аерації	0,21	0,6	0,13	0,7	0,09
Біогаз з кукурудзи як енергетичної культури	1,59	0,7	1,11	1,0	1,11
ВСЬОГО	5,84		4,15		2,22

Экологические аспекты

- ▶ БГС отечественных полигонов выделяется в атмосферу, вызывая парниковый эффект (1 м³ метана эквивалентен 21 м³ углекислого газа) и неприятный запах
- ⋄при сгорании БГС в теле полигонов в воздух выделяются особо токсичные вещества – диоксины и фураны

Исследование полигонов

Исследования проводились методом бурения скважин слубиной до 30 м, установки перфорированных труб диаметром 100 мм и засыпки затрубного пространства щебнем

Коммерческая добыча БГС предполагает бурение скважин диаметром 500...1000 мм

- ❖ Отбор БГС производили посредством мобильной аппаратуры оригинальной конструкции в составе генератора электроэнергии и блока отбора газа, создающего разрежение и измеряющего производительность потока газа
- добытый БГС сжигали на воздухе в специальной горелке

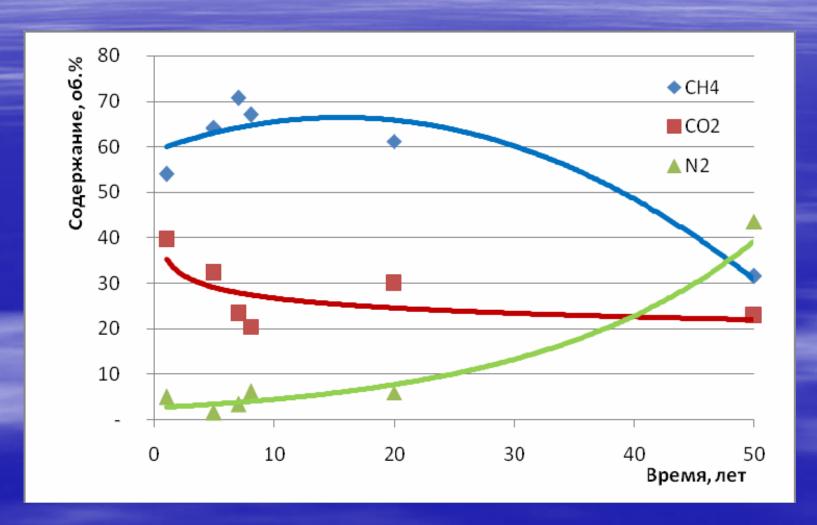
◆ Пробы биогаза анализировали в лаборатории Института газа
 НАН Украины на газовом хроматографе Agilent 6890 N

№ полигона ТБО Данные анализа, об.%

CH₄ CO₂ O₂ N₂ H₂S H₂O

1 64.11 32.20 - 1.59 0.07 2.03

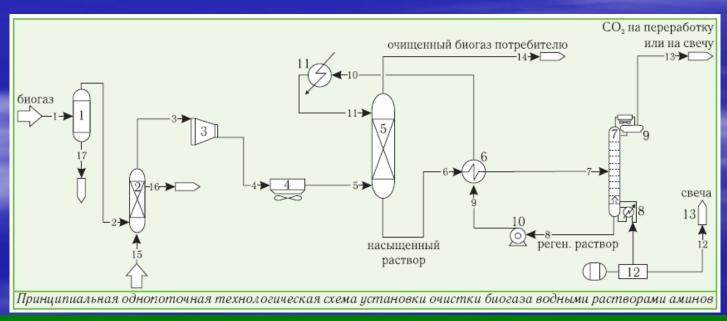
2 61.25 29.95 1.38 6.04 - 1.38


3 54.03 39.53 - 4.93 - 1.51

4 67.11 20.46 2.11 8.18 - 2.14

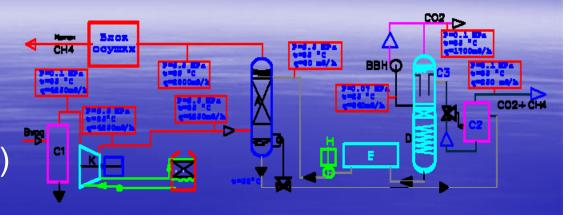
5 70.65 23.34 - 3.45 - 2.56

среднее значение суммарного содержания прочих примесей составляет 0.17%, максимальное – 0.4%


Тенденция изменения пропорции различных газов в БГС

Очистка биогаза

 № Путем сепарации абсорбентами БГС может быть доведен до кондиций природного газа коммерческой чистоты


Показатели процесса очистки биогаза от СО2 аминовыми сорбентами

Показатели	Состав сорбента, % (масс.)					
	13%МЭА	18%МЭА	40%ДЭА	10%МЭА+	8%MЭA+	6%МЭА+
	+ 87%H ₂ O	+ 82%H ₂ O	+ 60%H ₂ O*	-40%MДЭА +	40%MДЭА +	40%MДЭА +
	677011 ₂ O	62/011 ₂ O	00701120	50%H ₂ O	52%H ₂ O	54%H ₂ O **
Расход сорбента,	5355	4215	4580	3115	3700	4430
кг/ч						
Тепловая нагрузка	175200	176400	179500	138800	139600	154100
кипятильника десорбера, ккал/ч (кВт)	(203.6)	(205.0)	(208.6)	(161.4)	(162.3)	(179.1)
Тепловая нагрузка	-40750	-41570	-66830	-43410	-38040	-52560
дефлегматора десорбера, ккал/ч (кВт)	(-47.37)	(-48.3)	(-77.67)	(-50.45)	(-44.2)	(-61.1)
Тепловая нагрузка	-138500	-137500	-115000	-96500	-10300	-10300
холодильника, ккал/ч (кВт)	(-161.0)	(-159.8)	(-133.7)	(-112.2)	(-119.7)	(-119.7)
Мощность насоса, кВт	0.208	0.163	0.172	0.119	0.142	0.170

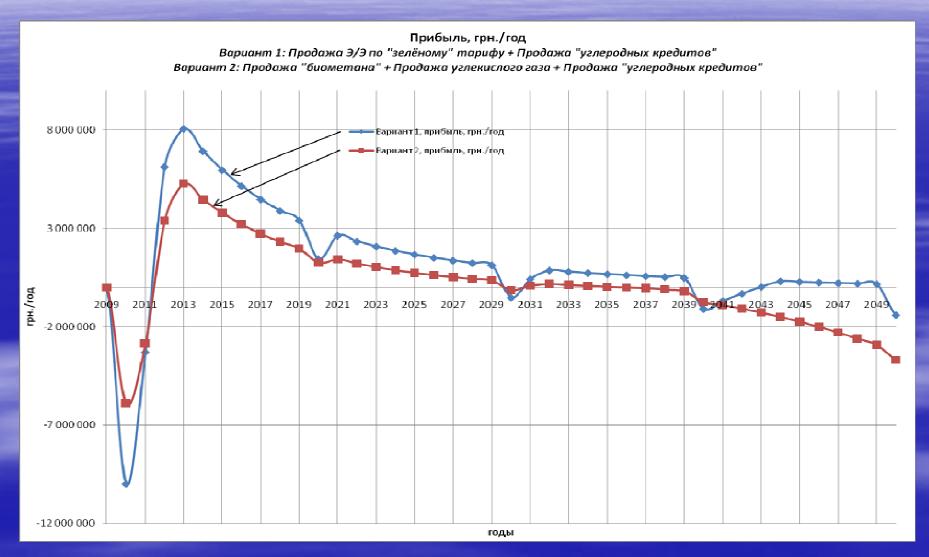
Институт газа НАН Украины, г. Киев, Украина

Система очистки свалочного газа для подачи в газопровод (Алабама, США, 2006)

4500 куб.м./час

Производство метана и СО2

• 1000 нм³ CO₂ = \$100

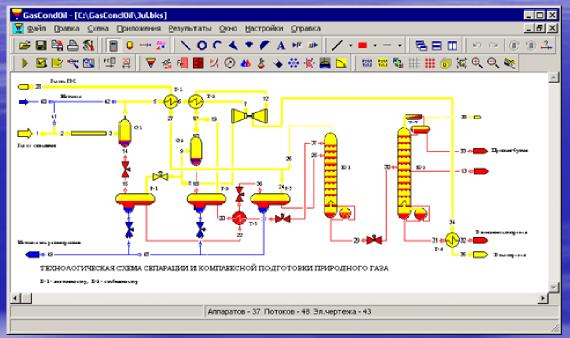

❖ БГС после очистки может использоваться для заправки автомобилей:
 1скважины производительностью 20 м³/ч хватает для заправки грузового автомобиля 10 раз в сутки

Сжигание БГС в двигателях внутреннего сгорания с вырабатыванием электроэнергии

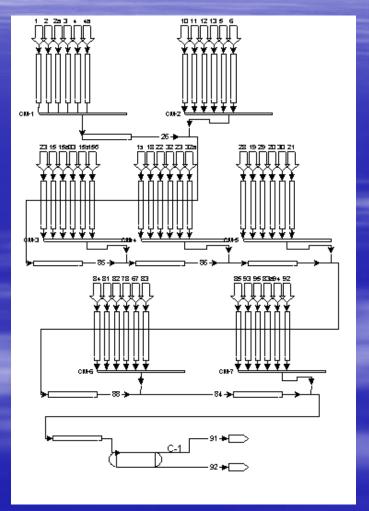
❖ При производительности системы скважин 500 м³/ч мощность когенерационной энергетической установки составит 2.4 МВт

Динамика доходов: производство электроэнергии и газа

Сооружение системы сбора и утилизации биогаза Киевского полигона ТБО №5


– 000 «ЛНК»

Проектная производительность **3200 м³/ч**, эл. мощность **4500 кВт**


Моделирование системы сбора биогаза

первая очередь, 42 скважины

Производительность системы — 800 м³/ч, общая длина шлейфовых трубопроводов составляет 6997 м, магистрального трубопровода — 258 м. Перепад давления по всей системе составляет 0.004 МПа, на выходе из системы газ имеет следующие параметры:

- давление (разрежение) -0.004 МПа; - водная фракция 21.9 кг/час

Характеристики потоков

Поток	1	2	26	39
Давление, МГа	0,096	0,096	0,095	0,096
Temrepatypa, C	30,00	2,00	1,98	30,00
Доля фазы(мольн.); газ	1,000000	0,964121	0,964162	1,000000
водиый раствор	0,000000	0,083879	0,083888	0,0000000
Состав	мольн.доля	мольн.доля	мольн.доля	мольн.доля
Asor	0,0394633	0,0394633	0.0394533	0.0394633
Merax	0,6814114	0,6314114	0.6514114	0.6814114
Дискидумерода	0,2861088	0,2861088	0.2861088	0.2861.088
Бода	0,0480171	0,0490171	0.0480171	0,0450171
Расход, ст.м8/час	19,47	19,47	116,83	19,47

Распределение температуры и давления потока по длине трубопровода

Монтаж системы сбора биогаза

Система сбора и первичной подготовки свалочного газа к утилизации в двигателях внутреннего сгорания с генерацией электроэнергии состоит из следующих компонентов:

- скважины;
- шлейфовые трубопроводы;
- коллекторы шлейфов;
- магистральный трубопровод;
- сепаратор

⋄Один из пяти газопоршневых генераторов

Система подачи топлива

блок из 5 газопоршневих генераторов TEDOM Cento 180 (Чехия) и трансформаторной подстанции

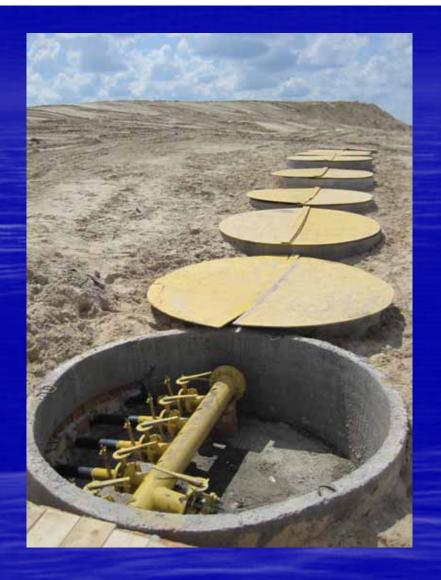
Станция по переработке БГС в электроэнергию мощностью 900 кВт

дегазация полигона (первая очередь) позволила сократить выбросы парниковых газов на 30 тыс.тонн_СО₂экв/год

Вторая очередь полигона №5

- Мощность второй очереди 1МВт
- Генератор "Jenbacher"

Фото Google из космоса


Видна «гроздь» трубопроводов

Станция по переработке БГС в электроэнергию мощностью 1 МВт (Борисполь)

по 2 объектам (5-й полигон и Борисполь) выработано 16 млн. кВт-ч электроэнергии

= 5 млн. куб.м природного газа = 16 млн. грн (2 млн. долл. США) сокращение парниковых газов на 75 тыс.тонн_СО₂экв

⋄Коллекторные колодцы

❖Передача электроэнергии в сеть

ВЫВОДЫ

- ◆ Полигоны ТБО Украины являются источниками газа, содержащего до 70% биометана
- Биогаз может быть эффективно использован в производстве топлива, электроэнергии и тепла
- ❖ИГ НАНУ обладает опытом добычи биогаза полигонов ТБО и широким спектром технологий его использования в качестве альтернативного топлива
- Созданы 3 станции по переработке БГС в электроэнергию мощностью 4 МВт. На начало 2014 года выработано 16 млн. кВт-ч электроэнергии = 5 млн. куб.м природного газа = 16 млн. грн (2 млн. долл. США) сокращение парниковых газов - 75 тыс.тонн_СО₂экв

СПАСИБО ЗА ВНИМАНИЕ!

ПРАКТИКА ИСПОЛЬЗОВАНИЯ БИОГАЗА СВАЛОК ДЛЯ ПРОИЗВОДСТВА ЭЛЕКТРОЭНЕРГИИ И ГАЗА

А.И. Пятничко +38(044)4564828

Г.В. Жук +38(093)5767713 hen_zhuk@ukr.net

Институт газа НАН Украины, г. Киев, Украина