

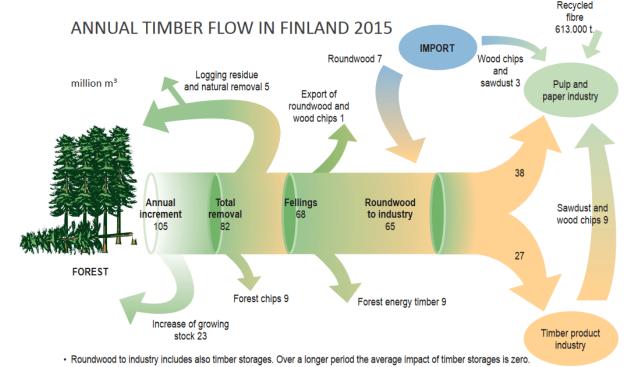
Development for Opportunities for Utilisation of Biomass Residues in the Renewable Sector of Ukraine

Biomass to heat and Power - FIN/UA cases Result Seminar, Kyiv, Feb 05th and 06th 2020

Mr Matti Virkkunen, VTT, Mr Yevhen Oliinyk, SEC Biomass

07/02/2020 VTT – beyond the obvious

Держенергоефективності

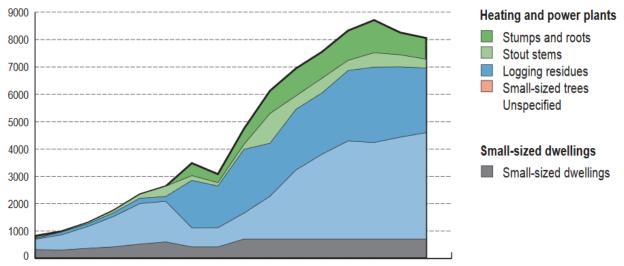

VTT

Background

07/02/2020 VTT – beyond the obvious

Wood-based bioenergy is a by-product of sustainable forestry

Source: Natural Resources Institute Finland (stat.luke.fi) and NFI, Finnish Forest Industries. Updated 24.04.2017.


Image source: forest.fi

Forest based energy in Finland

USE OF FOREST CHIPS AND ITS RAW MATERIALS 2000-2015

VTT

1,000 m³

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

- The use of forest chips has almost multiplied by ten during the 2000's. finland's goal is that in 2020 the annual use is 13.5 million cubic meters.
- Felled stout timber is made into forest chips, if it has such faults that it cannot be used as timber or pulp wood. Such a fault can be decay, for example.
- Source: Natural Resources Institute Finland (stat.luke.fi). Updated 19.4.2016.

Forest based energy in Finland

VTT

SOLID WOOD FUEL CONSUMPTION IN HEATING AND POWER PLANTS IN 2015

FUEL	Solid vo mill.m3 s		Energy TWh sl	content nare, %	Users
FOREST CHIPS	7.35	40.2	14.68	42.1	985
FOREST INDUSTRY BY-PRODUCTS	10.10	55.3	18.27	52.4	-
industrial chips	1.02	5.6	2.06	5.9	200
sawdust	2.15	11.8	4.28	12.3	245
bark	6.92	37.9	11.90	34.1	190
other	0.02	0.1	0.03	0.1	3
WOOD PELLETS AND BRIQUETTES	0.14	0.7	0.73	2.1	240
RECYCLED WOOD	0.69	3.8	1.19	3.4	105
TOTAL	18.27	100	34.87	100	-

· The bulk density of 1,150 kg/m3 has been usen in converting pellets and briquettes into solid volume.

· Source: Natural Resources Institute Finland (stat.luke.fi). Updated 21.04.2017.

Image source: forest.fi 7.2.2020 VTT – beyond the obvious

Agrobiomasses in Finland

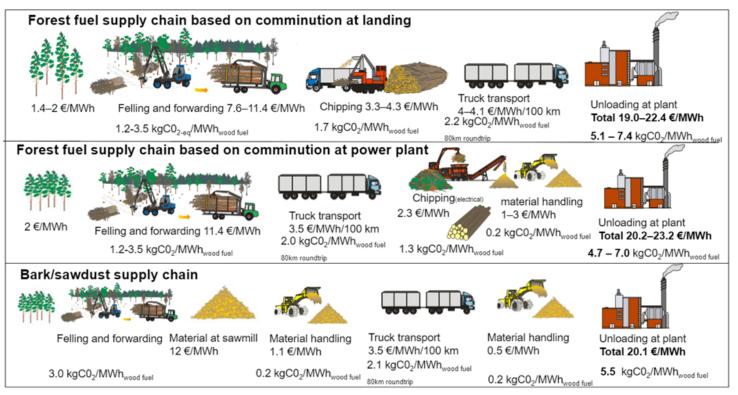
Current energy use of agrobiomasses 0.5 TWh/a, mainly straw

- Total potential 12 22 TWh/a
- Major part of the potential consists of agricultural side products (straw) 10% and dedicated energy crops 50% (Reed canary grass) (Mikkola 2012. peltoenergian tuotanto Suomessa)

(Sakari Alasuutari/Plugi)

FIN Cases: #1 Imatran Lämpö Oy Virasoja

#2 Imatran Lämpö Oy Rajapatsas

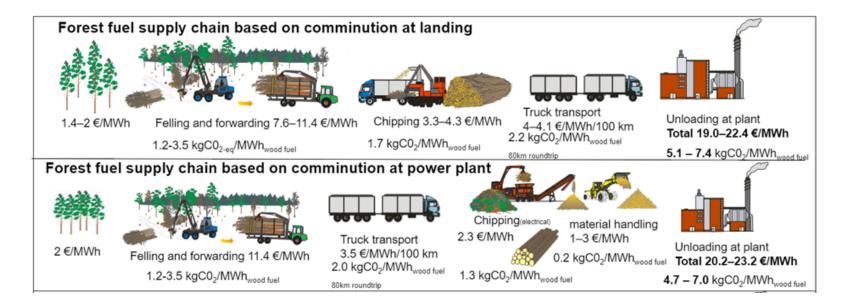

Project #1 Finland: Imatran Lämpö Oy, Virasoja

- Biomass boiler heat capacity 36 + 4 MW
- Main fuel wood chips (from logging residues), bark
- Investment 15.5 M€
- Energy production:
 - heat 134495 MWh
 - power N/A MWh
- Fuel consumption 154 565 MWh
- Energy efficiency of supply chain 84%*

*=heat produced/fuel consumption_{fuel}+fuel consumption _{supply chain} => approx 2-3ltr diesel fuel consumed for 1 Mwh_{fuel}

Project #1 Finland: Imatran Lämpö Oy, Virasoja

Project #2 Finland: Imatran Lämpö Oy, Rajapatsas

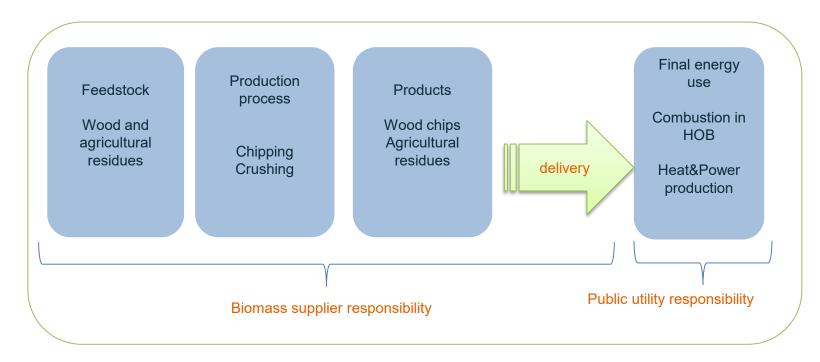

- Biomass boiler heat capacity 4 MW
- Main fuel wood chips
- Investment 2.6 M€
- Energy production:
 - heat 18 871 MWh
 - power N/A MWh
- Fuel consumption 22 894 MWh
- Energy efficiency of supply chain 80 %

*=heat produced/fuel consumption_{fuel}+fuel consumption _{supply chain} => approx 2-3ltr diesel fuel consumed for 1 Mwh_{fuel} => Energy consumption in the supply chain approx. 0,03MWh_{diesel}/Mwh_{wood fuel}

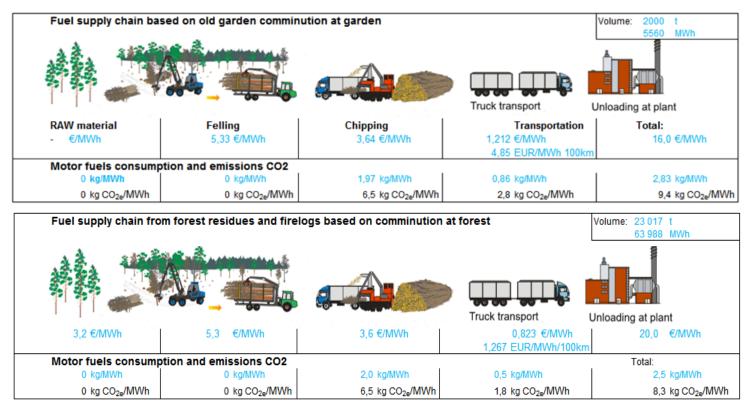
Fuel supply chain costs and emissions

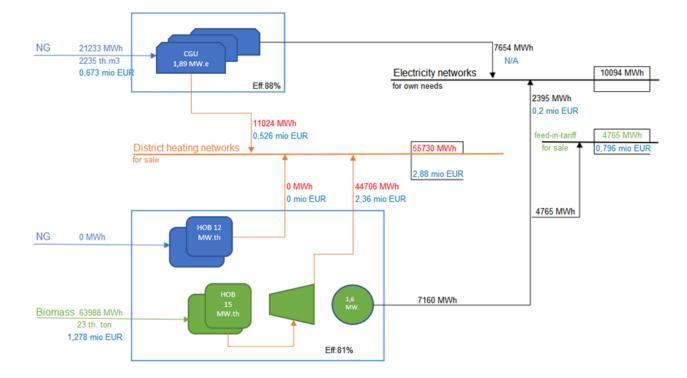
VTT

UA Cases: #1 Biomass CHP installation of public utility Miskteplovodenergia #2 Biomass HOB installation of private company LLC Ukteplo


VTT

Project #1 Ukraine: Biomass CHP installation of public utility Miskteplovodenergia

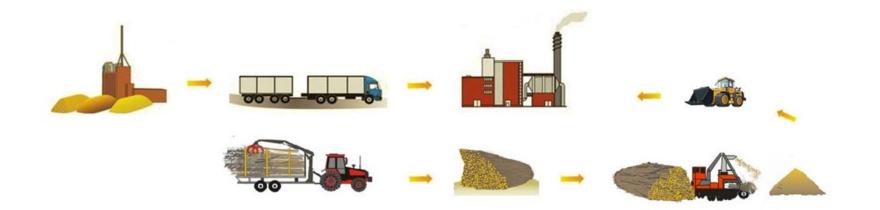

- Biomass boiler heat capacity 15 MW
- ORC unit power capacity 1,6 MW
- Main fuel wood chips
- Investment 12,2 mill \$
- Loan (WB) 9.6 mill \$
- Energy production:
 - heat 44 706 MWh
 - power 7 160 MWh
- Fuel consumption 69 548 MW (23 kt)
- Energy efficiency of supply chain 77%


Fuel supply chain

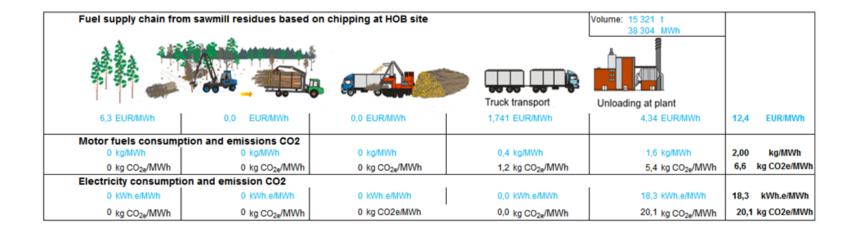
Fuel supply chain costs and emissions

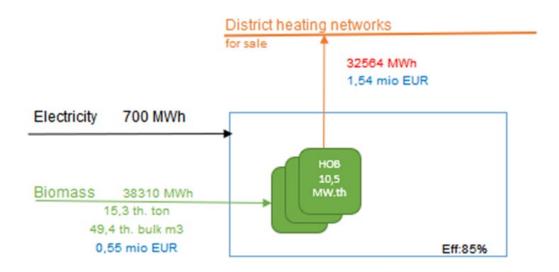
Flow chart for energy production

VTT


Project #2 Ukraine: Biomass HOB installation of private company LLC Ukteplo

- Biomass boiler heat capacity –10,5 MW
- Main fuel wood chips
- Investment 4 mill \$
- Energy production:
 - heat 32 564 MWh
 - power 0 MWh
- Fuel consumption –38 300 MW (15 kt)
- Energy efficiency of supply chain –81 %




Fuel supply chain

Fuel supply chain costs and emissions

Flow chart for energy production

Biomass to heat and power, Cases #1 and #2: **Observed** similarities, differences and suggestions for development

Case #1 Energy balance of fuel supply chain

Name	Virasoja	MTVE	Units
Install capacity	36 +4	15	MW
Total volume of biomass	67 476	23 017	t
	154 565	69 548	MWh
Diesel consumption		205	t
		2432	MWh
Total energy production	148 973	51 866	MWh
heat	148 973	44 706	MWh
power	-	7 160	MWh
Power for own consumption	3500	2 395	MWh
Useful energy balance	145 473	48 958,1	MWh
% of primery energy	94,1%	77%	-

Case #1 CAPEX and OPEX

Name	Virasoja	MTVE	Units
Install capacity	36+4	15	MW
heat production	148 973	44 706	MWh
power production	-	7 160	MWh
Biomass CHP CAPEX, incl. VAT	15,5	12,2	Mio €
OPEX, excl. VAT:			
Biomass	2,632	1,278	Mio €
Maintenance costs	0,115	0,003	Mio €
Repairing costs	0,089	0,017	Mio €
Personnel costs	?	0,176	Mio €
Own cost of:			
- electricity		0,083	€/kWh
- heat	22,6	42,8	€/MWh
Revenue, excl.VAT	7,3	2,6	Mio €

Case #1 Technical Key Performance Indicator

Name	Virasoja	MTVE	Units
Raw materials consumption	67 476	23 017	t/year
Raw materials consumption	154565	63 988	MWh/year
Losses	5595	-	MWh/year
Power produced	-	7 160	MWh/year
Heat produced	148 973	44 706	MWh/year
Internal power consumption	3 500	2 395	MWh/year
Boiler Efficiency	94,1%	85%	%
CO ₂ emissions		17 279	t.CO _{2e} /year

Case #2 Energy balance of fuel supply chain

VTT

Name	Rajapatsas	LLC Ukteplo	Units
Install capacity	4	10,5	MW
Total volume of biomass	8 562	15 321	t
	22 894	38 304	MWh
Diesel consumption		76,7	t
		910	MWh
Total energy production	18 871	32 564	MWh
heat	18 871	32 564	MWh
power	-	-	MWh
Power for own consumption	18,63	700	MWh
Useful energy balance	18 852	30 953	MWh
% of primery energy	82,3%	81%	-

Case #2 CAPEX and OPEX

Name	Rajapatsas	LLC Ukteplo	Units
Install capacity	4	10,5	MW
heat production	18 871	32 564	MWh
power production	-	-	MWh
Biomass CAPEX, incl. VAT	2,6	3,556	Mio €
OPEX, excl. VAT:			
Biomass	0,465	0,466	Mio €
Maintenance costs	0,018	0,073	Mio €
Repairing costs	0,006	0,019	Mio €
Personnel costs	0,050	0,053	Mio €
Own cost of:			
- electricity	-	-	€/kWh
- heat	20,31	20,832	€/MWh
Revenue, excl.VAT	0,342	1,286	Mio €

Case #2 Technical Key Performance Indicators

Name	Rajapatsas	LLC Ukteplo	Units
Raw materials consumption	8562	15 321	t/year
Raw materials consumption	22894	38 304	MWh/year
Heat production	18871	32 564	MWh/year
Internal power consumption	18,63		MWh/year
Boiler Efficiency	82,3 %	85%	%
CO ₂ emissions	Not available	6 417	t.CO _{2e} /year

The similarities, contrasts and differences in the practices used in Finland and Ukraine

Article	Ukraine	Finland
Share of forest (Woodiness)	16,5%	74%
Forest area	10,6 mil ha	23 mil ha
Felling area	445 th. ha/a	1 850 th. ha/a
Volume of timber harvesting	20 mil m ³	70 mil m ³
Number of forestry owners	Private – 0 State -543	Private forestry – 600 000 State forestry – 25% of land area
Main wood fuel feedstocks	Wood waste and fuel wood	Logging residue, delimbed small diameter stems, Non-commercial stem wood, bark, sawdust
Methods of harvesting wood residue	manual	Mechanized, minor share manual in special sites with sensitive soil or other special conditions
Main place of waste/chips processing/production	At the woodworking enterprises, at the CHP / boiler room	Roadside storages near cutting sites for logging residue. For delimbed stem and other stemwood also grinding at CHP/terminal is a feasible option

The similarities, contrasts and differences in the practices used in Finland and Ukraine

Article	Ukraine	Finland
Main residue/waste grinding	Stationary wood chippers and low-	High productivity truck mounted mobile
technology	productivity mobile chippers	chipper
Typical moisture content	35-45%	45- 60%
Typical net weight load capacity - cargo weight	Lightweight (up to 10t) or mediumweight (up to 25t)	up to 30km small scale tractor - up to 25 t net load) and heavy > 30km distance (35- 45 t net load)
Methods of quality control controlling	Weight control,	Weight control for each delivered load,
the volume of delivery and quality of	Moisture control	quality control - sampling of each load,
wood fuel and fuel raw materials		quality certificates,
The average wood chips market price,		
EUR/MWh incl. VAT:		
- Feedstock	0-3,2	1,4-2
- Felling	5,3-7	7,6-11
- Chipping	3,6	3,3-4,3
- Transportation	0,82-2	3-5
Total	12-22	20-25
Diesel fuel price	0,9-1 EUR/lt	1,45 EUR/It

Benchmark analysis of case studies between BAT and Ukrainian practices

Estimate Gap Impact = likel	ihood*impact				
Impact	Neglible 1	Minor 2	Moderate 3	Significant 4	Severe 5
Very likely/common 5					
Likely/rather common 4					
Possible 3					
Unlikely 2					
Very unlikely 1					

	Solid biomass	
	Production process (Gap impact = 20). No special high productivity equipment for chipping wood residues to provide large quantities of raw materials for powerful energy objects.	
	Product (Gap impact = 20). High price of wood chips from firewood. Produced thermal energy can be not competitive with traditional fuels (gas).	
<	Heat/Power generation and product (Gap impact = 25). The lack and high cost of special equipment for burning of wet fuel and bark.	
	Final energy distribution (Gap impact = 20). High level of state regulation of heat and electric energy production and limited level of projects profitability.	
	Heat final use (Gap impact = 12). Problems with grid connection, seasonal consumption of thermal energy, lack of a clear state policy and support for waste and renewable energy consumption.	

Benchmark analysis of case studies between BAT and Ukrainian practices

Value chain step	Feedstock	Production process	product	Transport	Heat/Power generation	Final energy distribution
BAT in FIN	Residue collected from spruce dominated final felling areas	Chipping at roadside with heavy duty truck mounted chippers	Even particle size, moisture content/impurities/ma rket value/Standards for quality		Receiving/feed to process/combustio n	Power grid/DH grid
UA practice	Not common	On-site shredding with small shredders, mobile shredding services, waste disposal at lower timber landing	High moisture and ash content, deferent particle size	Transportation by trucks - 6-10 t net load capacity	Direct combustion, steam cycle	Power grid/DH grid

Benchmark analysis of case studies between BAT and Ukrainian practices

Value chain step	Feedstock	Production process	product	Transport	Heat/Power	Final energy distribution
Gaps/bottlenecks	Lack of information, lack of technology, high manual labor costs, low productivity, limited access 16 (4x4)	No special equipment for chipping 20 (4x5)	Low quality as fuel 25 (5x5)	No wood roads need for off-road transport 12 (4x3)	no special equipment for combustion of moist fuel, Lack of a large number of powerful consumers 25 (5x5)	tariffs and profitability state regulation, high competition with traditional fuels (gas), grid connections 20 (5x4)
Recommendation	Publish information on harvesting and volume of harvesting waste, oblige forestry to collect waste, set targets for the use of forestry waste	Increase forestry financing to upgrade the technical status and production of new products or increase production		Need to construct forest roads, to use trailers with a net loading of more than 20 tons	installation of new equipment for wet fuel combustion, use of heat energy	set national and regional targets for the share of RES in heat and electricity, introduce incentives for the use of wood and agriculture residues, grid connection

07/02/2020 VTT – beyond the obvious

The value chain steps with most important gap impacts

- Production process (Gap impact -20). No special high productivity equipment for chipping wood residues to provide large quantities of raw materials for powerful energy objects.
- Product (Gap impact -20). High price of wood chips from firewood. Produced thermal energy can be not competitive with traditional fuels (gas).
- Heat/Power generation and product (Gap impact -25). The lack and high cost of special equipment for burning of wet fuel and bark.
- Final energy distribution (Gap impact -20). High level of state regulation of heat and electric energy production and limited level of projects profitability.
- Heat final use (Gap impact -20). Problems with grid connection, seasonal consumption of thermal energy, lack of a clear state policy and support for waste and renewable energy consumption.

Conclusions

- Biomass transport efficiency is a key challenge, load sizes are two times larger in Finland
- Mechanized forestry and high-efficiency technology is a key to cost-effective forest fuel supply
- Long (wood) biomass transport distances are a challenge in K-Podilsky
- Short heating season is a big challenge in UA
- Relatively low gas prices are an economic challenge for new investments

Conclusions

- Low heat tariff and weak state support for heat production in UA
- High price for feedstock is a big challenge in UA (High price of wood chips from firewood)
- Lack of a large number of powerful consumers
- No special equipment for moist fuel combustion
- Problems with grid connection

High level of state regulation of heat and electric energy production and limited level of projects profitability

07/02/2020 VTT – beyond the obvious

Conclusions

- The direct comparison of a case against another does not reveal all bottlenecks.
- In Finland bioenergy especially wood based heat and power is a result of a determined and multi-dimensional long term development covering sustainability in social, environmental and economical level.
- Also it has been a matter of political will certain forestry practises that aim at wood fuel production have received subsidies and a support mechanism has been available for wood fuel use in heat and power production
- For the future the key question is how CO₂ emissions from biomass will regarded. Is BIO-CO₂ equivivalent to the CO₂ that is formed when fossil fuels are burned?

beyond the obvious

First Name Surname firstname.surname@vtt.fi +358 1234 5678 @VTTFinland
@your_account

www.vtt.fi

07/02/2020