

CONVERSION TO BIOMASS FIRING – AN ALTERNATIVE TO DECOMMISSION?

BY
PREBEN MESSERSCHMIDT
PROJECT DIRECTOR

- Ramboll in brief
- Why consider alternatives to decommission?
- Biomass conversion new fuel, new challenges
- Solutions & adaptation
 - Transport & Storage
 - Fuel preparation
 - CAPEX comparison to options
- Results reference project performances
- Summary of key points

GEOGRAPHICAL FOOTPRINT

LONGSTANDING COMPETENCIES FOR THE ENERGY SECTOR

Power

Waste-to-energy

Off-shore wind

District energy

Transmission

100 references worldwide. High efficiency fossil & biomass leaders

Over 140 completed projects in 40 Countries

Over 65% of world off-shore turbines Ramboll designed

Global leading consultant. 200 projects of all scales

onshore/offshore substations, o/h lines and system studies

Full Project life cycle services – Concepts, Feasibilities, Design, Construction & commissioning supervision, O&M support, Refurbishment & Life time extension, Decommissioning & Redevelopment

DISMANTLING & DEMOLITION

Oops ... what happened to ...

Biomass conversion???

- Ramboll in brief
- Why consider alternatives to decommission?
- Biomass conversion new fuel, new challenges
- Solutions & adaptation
 - Transport & Storage
 - Fuel preparation
 - CAPEX comparison to options
- Results reference project performances
- Summary of key points

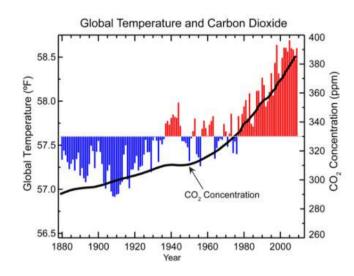
WHY CONSIDER ALTERNATIVES TO DECOMMISSION?

Drivers to consider decommission:

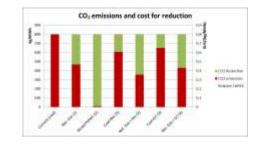
- Emission requirements (like the IED EU Directive)
- Regulatory pressure on lowering CO₂ foot print
- End of economic life (in present configuration!)

But, there is usually significant asset value

- Site permits
- Grid connection
- Utility infrastructure
- Fuel delivery transport infrastructure
- Staff and skills base
- Employment (politics!)
- Written off capital !!!!


WHY CONSIDER BIOMASS CONVERSION?

Capitalisation of asset values – a 'cheap' way towards sustainable power generation?


Squeezing the last MW out of the plant ©

Branding / Image: Renewable & sustainability

Support local economy by maintaining or even increase number of job positions locally*

Ref: US National Climatic Data Center - NOAA

BIOMASS CONVERSION - FUEL TYPE?

Fuel type very dependent on the existing plant configuration, but

- Wood Pellets, the immediate option for PC fired plants world market maturing fast
- Local / Indigenous resources?*, like:
 - Agricultural residues, i.e. straw, PKS, Olive husk etc
 - Forest residues, i.e. thinning, roots etc.
 - > other by-products, i.e. sawmill cut-offs, industrial waste wood etc.

10

- Ramboll in brief
- Why consider alternatives to decommission?
- Biomass conversion new fuel, new challenges
- Solutions & adaptation
 - Transport & Storage
 - Fuel preparation
 - CAPEX comparison to options
- Results reference project performances
- Summary of key points

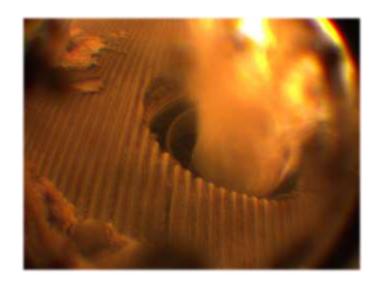
BIOCONVERSION - NEW FUEL

White wood pellets has different properties than coal:

- Lower calorific value
- Lower ash melting point
- Hydroscopic
- Dusty
- Fire & explosion properties
- Health issues

WOOD PELLETS SPECIFICATIONS	EN	
PARAMETERS AND REJECTION LIN	Standard	11 industrial
Physical parameters		Limit
Diameter	EN16127	6 to 8
Length ≤50 mm	EN16127	99.9%
Length ≤40 mm	EN16127	99%
Water content	EN 14774	≤ 10 %
Bulk (apparent) density	EN 15103	≥ 600
Maximum bulk temperature	EN15234-2	≤ 60
Net calorific value at constant pressi	EN 14918	≥ 16,5
Ash content	EN 14775	≤ 1,0%
Elementary composition		
CI	EN 15289	≤ 0,03%
N	EN 15104	≤ 0,3%
S	EN 15289	≤ 0,15 %
Trace elements		
As	EN 15297	≤2
Cd	EN 15297	≤1
Cr.	FN 15207	< 15

BIOCONVERSION - NEW FUEL, NEW CHALLENGES


Performance

- > Milling throughput
- De-rating
- > Slagging

Storage

- > Stores (dry)
- > Transportation (dry)
- > Dust

Safety

- Dust explosion mitigation measures
- > Fire control

Emissions CO2, SO2, NOx

BIOCONVERSION - NEW FUEL, NEW CHALLENGES HEALTH, FIRE & EXPLOSION

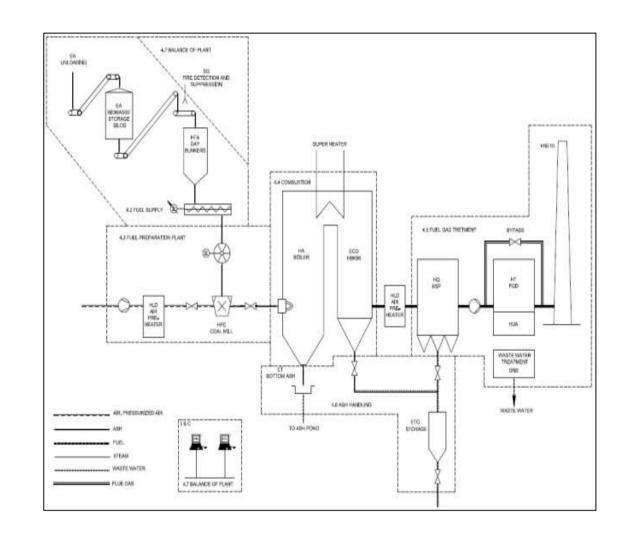
Safety risks / issues to be paid special attention:

√ Fire risks, due to self ignition properties

√ Explosion risks, due to dust properties

√ Health risks, due to inhalation

- Ramboll in brief
- Why consider alternatives to decommission?
- Biomass conversion new fuel, new challenges
- Solutions & adaptation
 - Transport & Storage
 - Fuel preparation
 - CAPEX comparison to options
- Results reference project performances
- Summary of key points

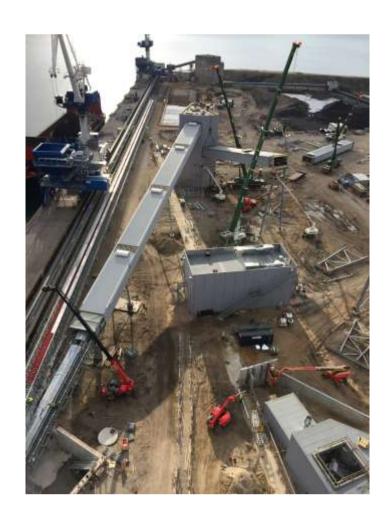

BIOCONVERSION - SOLUTIONS & ADAPTATIONS

Adaptations required throughout the Power station processes:

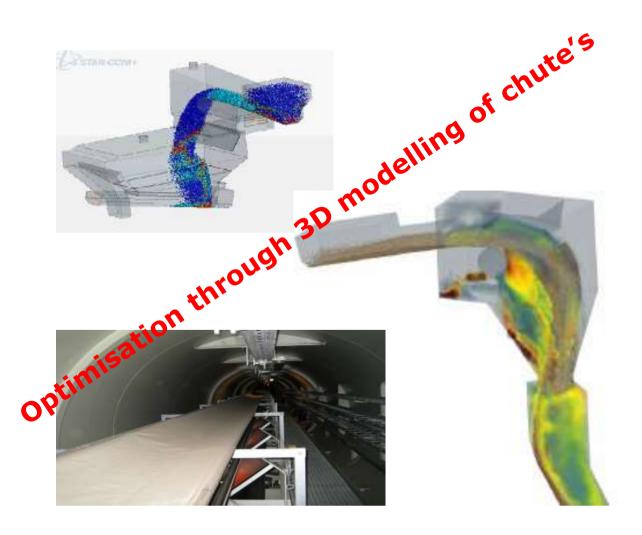
- Wood pellet storage and handling
- Fuel preparation plant
- Combustion
- Flue Gas treatment
- Ash handling
- Balance of plant systems

Bio-fuel combustion introduces new type of risks than those seen with coal combustion and gives rise to a an increased focus on:

- Dust management
- Fire & explosion mitigations



TRANSPORT & STORAGE - DESIGN


Layout & Design issues:

- > Fuel degradation
- > Dust Management
- > Redundancy strategy
- > Operational risk scenarios
- Optimise footprint while maintain accessibility

TRANSPORT & STORAGE - DUST MANAGEMENT

Specific design areas to be considered:

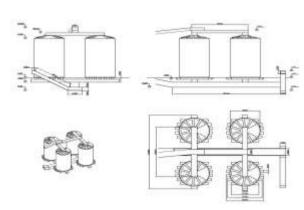
- > Reception facilities
- > Transfer points
- > Transportation system
- > Discharge system / concept

Dust management imperative!

TRANSPORT & STORAGE - ONE OR MULTIPLE SILOS?

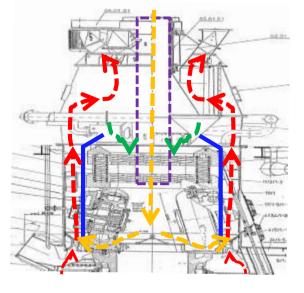
Pro / cons of few or one large silo:

- Reduced CAPEX
- Reduced OPEX
- Small footprint
- Lack of redundancy
- The efficacy of fire suppression systems at risk

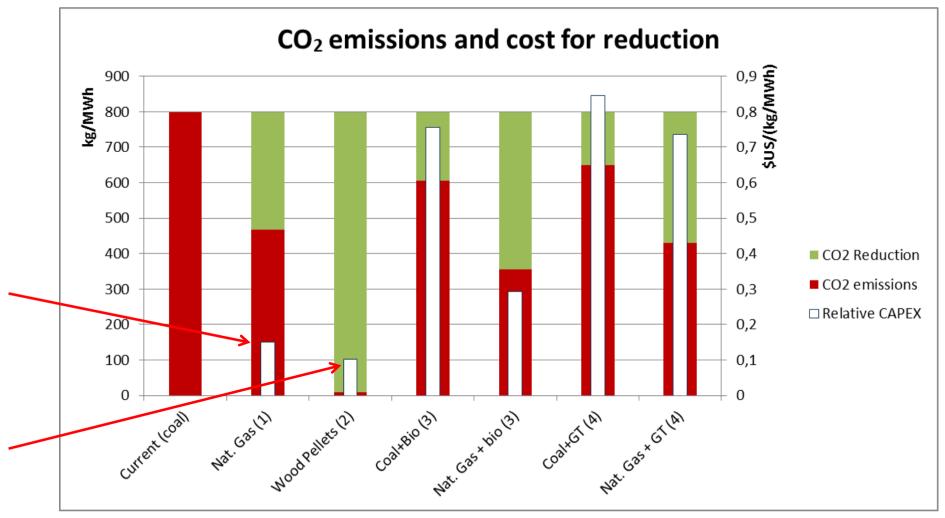

Pro / cons of more but smaller stores:

- Increased redundancy
- Improved efficacy of fire suppression systems
- Reduced risk of fire propagation
- Increased footprint
- Increased CAPEX
- Increased OPEX

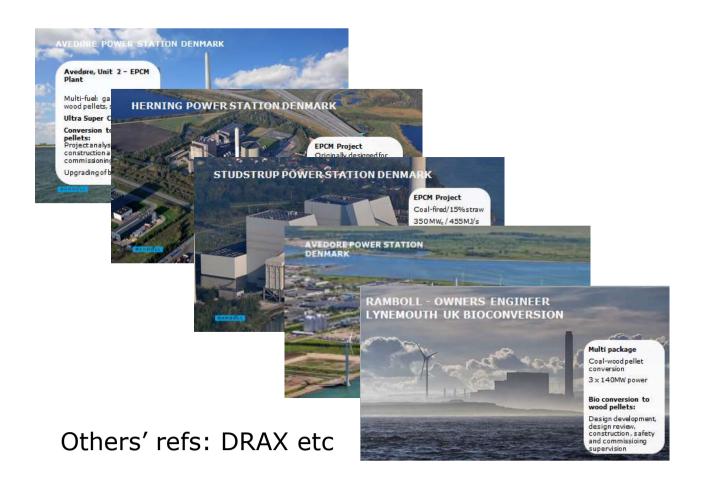

BIOCONVERSION - COAL MILL CONVERSION


Many brands and types of coal mills has through proper modifications proven suitable to grind wood pellets

without the cost of new mills



CAPEX COMPARISON OF OPTIONS


Direct conversion from coal to biomass carries the lowest relative CO2 reduction costs

- Ramboll in brief
- Why consider alternatives to decommission?
- Biomass conversion new fuel, new challenges
- Solutions & adaptation
 - Transport & Storage
 - Fuel preparation
 - CAPEX comparison to options
- Results reference project performances
- Summary of key points

COAL TO BIOMASS CONVERSION - RESULTS

Performance achievable:

85 - 100% MCR

Emissions:

CO₂ reduced by >90%
SO₂ significantly reduced
NO_x reduced by >50%

- Ramboll in brief
- Why consider alternatives to decommission?
- Biomass conversion new fuel, new challenges
- Solutions & adaptation
 - Transport & Storage
 - Fuel preparation
 - CAPEX comparison to options
- Results reference project performances
- Summary of key points

BIOCONVERSION - SUMMARY OF KEY POINTS

Large scale Biomass conversion is Manageable and Viable by

- maintaining performance and
- providing significant carbon savings, and
- Providing significant emissions reductions as well

And perhaps an alternative to Decommissioning considerations?

THANKS FOR YOUR ATTENTION

QUESTIONS?

Preben V. Messerschmidt
PNVM@ramboll.com
+45 51613363

Ramboll Hannemanns Allé 53 2300 Copenhagen Denmark

