Valmet BFB conversions

Joonas Hämäläinen

This is Valmet

- Market's widest offering combining process technologies, services and automation
- Research and development spend EUR 75 million in 2020

Market leadership

- Leading market position in all markets
- Pulp #1-2 #1-3 Energy Board #1 #1 Tissue
- #1 Paper #1-2
- Services . #1-3
- Automation

Strong global presence

- Approx. 100 service centers
- 98 sales offices
- 43 production units
- 16 R&D centers

South America

 14,000 professionals EMEA 9,200

	and the second
China	1,900
North America	1,500
Asia-Pacific	900

500

Leader in sustainability

- Seven consecutive years in Dow Jones Sustainability Index
- Four consecutive years in Ethibel Sustainability Index Europe
- A- rating in CDP climate program 2020

Leading technology supplier of biomass and multifuel boiler plants globally

BFB conversion means

" Modification of an other type of boiler to Bubbling Fluidized Bed combustion"

 Especially existing biomass and coal boilers are suitable for BFB conversion, but also recovery boilers in the pulp mills.

HYBEX boiler

HYBEX = Valmet <u>Bubbling Fluidized Bed Boiler (BFB)</u>

HYBEX[®] Boilers and Conversions

> 200 delivered boilers, > 60 BFB conversions, > 40 years experience

Conversions:

- Same BFB technology is applied as in new Hybex boilers
- All kind of boilers converted to BFB
 - 10 Pulverized Fired
 - Grate, Recovery, Oil boilers etc.
- Mostly boiler made by other boilermakers, only <10 own
- BFB references In Europe, Asia, North and South America

Net steam output MW_{th}

Traditional biomass fuels

Wood chips Bark Forest residues Saw dust Milled peat Sod peat Pulp mill sludges

Eucalyptys bark De-inking sludge Recycled wood & fiber Industrial waste (REF) Recycle Derived Fuel (RDF) Tire derived fuel (TDF) Agro wastes

Demanding fuels

Fluidized sand bed

- Sand particle size 0.5 1.5 mm
- Static bed height 40-60 cm
- Fluidizing velocity 0.8 -1.2 m/s
- Bed temperature 700 950 °C
- Pressure drop 6 9 kPa

Conversion to BFB Boiler

Traditional scope of supply

BFB biomass conversion vs. new boiler

Chances and challenges

CHANCES/BENEFITS

Lower investment cost compared to new plant

- 50 to 70% lower cost
- Possible to utilize large amount of existing equipment

Shorter project schedule

• Typically one year to commissioning

Familiar boiler to operators

- Less training required
- Less operation errors

Simplier permit process

- Less strict environmental requirements
- Faster project start

CHALLENGES

Fuel limitations

• Limitations of the original boiler must be considered – corrosion, fouling, emissions

Capacity

 Capacity gets often lower compared to fossile fuel firing

Efficiency

 Flue gas exit depends on the existing heating surfaces and may be higher than in the new boiler → reduced efficiency

Steam pressure and temperature

• Same as in the original boiler, no possibility to optimize the power plant process

Emission control more difficult

• Limitations in boiler dimensions, layout and space

BFB conversion references

Białystok, Poland

- Pulverized coal boiler to BFB, 2 units

Kuopion Energia

- Pulverized peat boiler to BFB

IP, Kwidzyn, Poland

Traveling grate boiler to BFB
Södra Cell AB, Mörrum, Sweden
Recovery boiler to BFB

Billerud Gruvön AB

- Inclined grate boiler to BFB

Elektrociepłownia Białystok S.A, Poland BFB conversion

Original	
Steam	140 t/h 138 bar, 540 °C
Fuels	Coal + oil
Converted	
Steam	115 t/h
Fuels	Wood chips, forest residues, Agro biomass
Start-up	2008

Benefits:

- Coal replaced with biomass, production of green energy
- Lower emissions: SOx, NOx

Fuels and performance

80% wooden biomass:

forest residues (green and brown), wood chips

20% agro biomass and energy crops:

sunflower pellets, residuel oat grains, straw, willow

agro fuels 30% of heat input

LHV = 8 - 13 MJ/kg

Steam capacity: 105 t/h (actual 115 t/h)

Efficiency >88%

NOx < 200 mg/Nm3 SOx < 200 mg/Nm3

International Paper, Kwidzyn, Poland

Conversion to BFB, from a travelling grate boiler

Original design:

- Steam: 22 kg/s, 65 bar, 440 °C
- Fuels: Bark, Coal, Oil

After conversion:

- Steam: 28 kg/s
- Fuels: Bark, Woodwaste, Sludge, Oil
- Rebuild completed 2000

Results:

- Increased bark firing capacity (steam 22 kg/s to 28 kg/s)
- Reduced maintenance
- Eliminated support oil firing

Biomasse Energie Alizay SAS, France

Recovery boiler conversion to BFB firing

Original (Recovery boiler)

Steam	209 t/h
	60 bar (g), 450 °C
Fuels	Black liquor, natural gas
Start-up	1991

Converted (BFB boiler)

Steam	163 MW _{th}
	209 t/h
	62 bar (g), 460 °C
Feedwater	120 °C
Fuels	Wood chips, bark, clean recycled
	wood, natural gas
Start-up	2020

Start-up

Newest References

			STEAM DATA							
DELIVERY			BFB	TOTAL	PRESSUR		CAPACIT			
YEAR	CUSTOMER	COUNTRY	CAPACIT	CAPACIT	E	TEMP	Y	TYPE OF PROJECT		FUELS
-++	-	v	kg/: ▼	kg/: ▼	bar((▼	°C 🔻	MW, 🔻	*	, T	· · · · · · · · · · · · · · · · · · ·
2021										
2021	Adamów-Konin SA	Poland	61.1		97	540	157	PC boiler conversion to BEB boiler	BEBC	wood chips, willow chips, light fuel
	Addition Kontrak	rolana	01,1		51	540	157		brbc	
2020	Biomass Energie Alizay,							Recovery boiler (RB) conversion to BFB		
	Alizay	France	58,0		62	460	163	boiler	BFBc	Wood chips, bark, recycled wood
2013	Kuopion Energia Oy,							Pulverized peat fired boiler		
	Kuopio	Finland	88,0		114	535	220	conversion to BFB	BFBc	Wood residues, peat, oil
2012	OISC Mondi									
2012	Svktwkar	Russia	35.0		40	440	80	RB conversion to BEB	BEBC	Bark wood residues sludge oil
	cyncyndi	nusard	55,0						010C	ban, nood, residues, siduge, on
2012	CMPC Celulosa S.A.,									Eucalyptus and pine bark, wood
	Laja	Chile	42,0	49,0	46	440	114	RB conversion to BFB	BFBc	residues, fuel oil
2012	Elektrociepłownia Tychy S.A.,							Coal fired CFB boiler conversion		
	Tychy	Poland	38,0		100	540	105	to BFB firing	BFBc	Wood chips, non-forest biomass
2012	Flatter instance Bisketsk C.A.									Weed shine from the side will see
2012	Białystok	Poland	29.0		138	540	75	PC boiler conversion to BEB firing	BEBC	grain waste coal
	bidiystok	rolana	23,0		100	540			brbc	grant waste, coar
2011	Howe Sound Pulp and Paper Ltd									
	Port Mellon, BC	Canada	67,0		85	480	173	Hydrograte Stoker conversion to BFB	BFBc	Wood residues, sludge, natural gas
2011	Dalkia Łódź S.A.,									
	Łódź	Poland	50,0		130	540	129	PC boiler conversion to BFB	BFBc	Wood chips, non-forest biomass
2010	Konoporacia S.A.									
2010	Wroclaw	Poland	28.0		80	500	76	PC boiler conversion to BEB	BEBC	Wood chips, non-forest biomass
2010	Martinská Teplárenská a.s.,									
	Martin	Slovakia	21,0		57	450	60	PC boiler conversion to BFB	BFBc	Wood chips
2009	Portucel Cacia,									Eucalyptus bark, wood residues, oil,
	Lacia	Portugal	25,0	35,0	63	425	6/	Travelling grate conversion to BFB	BFBC	gas
2008	Elektrociepłowni Białystok S A									Wood chips, forest residue, willow
2000	Białystok	Poland	29.0		138	540	75	PC boiler conversion to BFB	BFBc	grain waste, coal

BFB conversions - Current trends

- Emission limits going tighter
- Clean wood based biomass not easily available
- Peat will be replaced with wood and other fuels
- Fuels getting more challenging recycled wood, REF, SRF, agro wastes
- → BFB conversions projects are larger in scope of supply and technologically more challenging
 - Achievable capacity becomes lower
 - Corrosion issues and fouling need more attention
 - Flue gas cleaning requires bigger modifications (SNCR, Baghouse filter to replace ESP, scrubber etc.)

Biomass combustion in Ukraine

- Ukraine has confirmed commitment to develop green energy (plan to be carbon neutral by 2060)
- Currently, woody biomass used effectively but agro fuels again is scarcely used.
- Future potential in agro fuels and energy crops (miscanthus, sunflower husk, straw, willow, poplar)
- Willow and some poplars can be considered good fuel for BFBs
- Miscanthus, sunflower husk and straw are considered as agro fuel that can be burned in limited quantities (mixed with quality fuels)

Ecological Engineering & Environmental Technology 2021, 22(5), 73-81

Figure 5. Suggested structure of biofuels consumption in Ukraine until 2050, by biomass type, Mtoe

