

Partnership | Progress

I Prosperity

Conference: Biomethane in Ukraine: Opportunities and Development Kyiv, June 10, 2025

Results of Analytical Note No. 2 "Advanced biomethane production from lignocellulose materials"

Dr. Petro Kucheruk,

Bioenergy Association of Ukraine

Key definitions

Directive (EU) 2018/2001 (RED III) provide the following means for ligno-cellulosic materials:

'ligno-cellulosic material' means material composed of lignin, cellulose and hemicellulose, such as biomass sourced from forests, woody energy crops and forest-based industries' residues and wastes;

'non-food cellulosic material' means feedstock mainly composed of cellulose and hemicellulose, and having a lower lignin content than ligno-cellulosic material, including food and feed crop residues, such as straw (Annex IX part A), stover (Annex IX part A), husks and shells; grassy energy crops with a low starch content, such as ryegrass, switchgrass, miscanthus, giant cane; cover crops before and after main crops; ley crops; industrial residues, including from food and feed crops after vegetal oils, sugars, starches and protein have been extracted; and material from biowaste, where ley and cover crops are understood to be temporary, short-term sown pastures comprising grass-legume mixture with a low starch content to obtain fodder for livestock and improve soil fertility for obtaining higher yields of arable main crops.

Crop residues means the leftovers from the harvest, essentially the plant parts that aren't used for food or other direct human consumption. Common examples include straw from wheat or rice, corn stalks, soybean stems, and other plant debris left in the field after harvesting.

Current status and prospects of using crop residues for biomethane production

Potential for biogases by region and by feedstock type, 2024

New biomethane plants in Europe by feedstock, 2008-2023

Feedstock use for production of biogases by selected region, 2023

Shares of feedstock use in selected European countries, 2023

The main types of crop residues in Ukraine

An example of material and energy balance for biogas production from wheat straw

The main properties of crop residues as feedstock for biogas production

Crop Residue	TS (%)	C:N	CEL	HCEL	LGN	Hydrophobicity Level	Key Hydrophobic Factors
Wheat straw	81-97	60-100	27_17	20-28	15_21	High	High lignin, waxy cuticle,
Wiledt Stidw	04-92	00-100	32-42	20-28	13-21	Ingri	silica
Corn stalks	72-84	45-65	34-45	22-30	12-18	Moderate–High	Moderate lignin, less waxy
	76-85						
Sunflower stalks	alks (after field	40-60	30-42	20-28	15-22	Moderate–High	Waxy surface, rigid
	curing)						
Rapeseed straw	80-90	50-75	30-40	18-26	18-24	Moderate	Moderate lignin, thinner wax
Soybean straw	82-88	25-35	32-42	20-26	14-20	Low–Moderate	Lower lignin, porous
Corn stalks Sunflower stalks Rapeseed straw Soybean straw	72-84 76-85 (after field curing) 80-90 82-88	45-65 40-60 50-75 25-35	34-45 30-42 30-40 32-42	22-30 20-28 18-26 20-26	12-18 15-22 18-24 14-20	Moderate–High Moderate–High Moderate Low–Moderate	Moderate lignin, less waxy Waxy surface, rigid Moderate lignin, thinner wa Lower lignin, porous

Key factors affecting AD

- Iow moisture content
- high (non-optimal) C:N ratio
- > hydrophobicity
- high lignin content and low bioavailability

Cuticle based hydrophobicity

Water soaking test

Technological schemes and production cost of baled straw and baled corn stover

Specific production costs for harvesting **8,550 tons of corn stover** with a moisture content of 25% from an area of **1,900 hectares**

Straw

Straw pretreatment methods and effects

		Biolog) o we him o d	Process	Advantages	Disadvantages
Physical Mechanical Thermal Ultrasound 	hysical Chemical Chemical Chemical Combined processes Combined processes Combined processes Steam explosion Enzymatic Combined processes Combined processes		Milling	 increases surface area makes substrate easier to handle often improves fluidity in digester 	 increased energy demand high maintenance costs / sensitive to stones etc. 		
 Electrochemical 				Hot water (TDH)		 increases the enzyme accessibility 	 high heat demand only effective up to certain temperature
Process	Cellulose decrystali- sation	HCEL degradation	Lignin degradation	Increasing specific surface	Alkali	 breaks down lignin 	high alkali concentration in digesterhigh cost of chemical
Biological				+	Microbial	 low energy consumption 	slowno lignin breakdown
Milling	+			+	Enzymatic	low energy consumption	 continuous addition required high cost of enzymes
Steam explosion		+	+	+		consumption	
Concentrated acid		+	+	+	Steam explosion	 breaks down lignin and solubilises hemicellulose 	 high heat and electricity demand only effective up to certain temperature
Diluted acid		+		+			 increased energy demand
Alcali		-	+	+	Extrusion	 increases surface area 	 high maintenance costs / sensitive to stones etc.
Extrusion A plus symbol (+) indic indicates that it has no e	ates that the pretr ffect, and no symbo	eatment method I means it is uncleo	has this effect, a ar if there is an effec	+ minus symbol (-) ct or not.	Acid	 solubilises hemicellulose 	 high cost of acid corrosion problems formation of inhibitors, particularly with heat

Examples of the straw pretreatment equipment

BIOEXTRUDER LEHMANN

XRipper

RotaCut

Screw pump

STRAW MILLING PLANT by Euromilling / Lin-Ka

BIOCRUSHER BIO-G

MAXXIMIZER MethaPlanet

BIOGRINDER MEBA

Feasibility study: feedstock and products

Feedstock	Feedstock cons	umption BMP CH ₄	% CH4	CH₄ yield
	t/year	Nm ³ CH ₄ /t	%	Nm ³ CH ₄ /year
Pig manure (TS 4%)	90 000) 12	65%	1 046 520
Wheat straw (TS 85%)	9 312	216	55%	1 908 434
Corn stover (TS 75%)	8 123	186	55%	1 117 292
Maize silage (TS 35%)	15 974	108	55%	1 516 718
	TOTAL 141 61	4 -	57%	5 915 203

		Output per concept:				
Product	Unit	Concept 1 – Biomethane from straw (extruded) + liquefied CO ₂	Concept 2 – Biomethane from pellets + liquefied CO ₂	Concept 3 – Biomethane from straw (extruded) only		
Diamethana (08% CUL)	thousand Nm ³ /year	4 455.3	4 756.9	4 455.3		
Biomethane (98% CH4)	MWh/year	43 540	46 488	43 540		
Liquefied CO ₂ (99.99%)	%	5 561	6 001	0		
Digestate, incl.:	t/year	109 760	110 928	107 344		

Feasibility study: CAPEX & OPEX

	Cost, thousand euros, including VAT and customs duties				
CAPEX component	Concept 1 – Biomethane from straw (extruded) + liquefied CO ₂	Concept 2 – Biomethane from pellets + liquefied CO ₂	Concept 3 – Biomethane from straw (extruded) only		
TOTAL	13 928.2	13 908.5	11 950.0		
Biogas production complex	6 060.0	5 710.5	5 981.1		
Equipment and technology for pre- processing straw and corn stover	736.2	800.5	736.2		
Machinery and technology for ensiling and transporting silage to the biogas plant	175.5	175.5	175.5		
Silo storage	383.4	513.0	305.9		
Biogas CHP	956.6	1 114.4	859.0		
Backup boiler room	248.4	268.9	215.3		
Biogas upgrading complex to biomethane	2 310.0	2 173.0	2 310.0		
CO ₂ liquefaction complex	1 485.5	1 485.5	-		
Biomethane transfer unit to the gas transmission system (main + backup compressor, 5 km gas pipeline, gas metering unit, chromatograph)	1 137.4	1 169.5	1 137.4		
Machinery and technology for CO ₂ logistics	195.1	195.1	-		
Connection to the power grid	58.4	120.9	47.8		
Machinery and technology for digestate operations	61.7	61.7	61.7		
Design	120.0	120.0	120.0		

	Cost, thousand euros, excluding VAT					
OPEX component	Concept 1 – Biomethane from straw (extruded) + liquefied CO₂	Concept 2 – Biomethane from pellets + liquefied CO ₂	Concept 3 – Biomethane from straw (extruded) only			
TOTAL	2 082.2	2 388.3	1 886.0			
Raw materials	873.9	873.9	806.3			
Raw materials logistics	99.2	72.4	89.0			
Biogas production	70.6	67.0	70.6			
Pre-treatment of straw and corn stalks	85.0	270.2	85.0			
Combined production of electricity and heat in biogas CHP	47.8	46.4	47.8			
Maintenance of a backup boiler room	9.3	10.0	13.2			
Enrichment of biogas to biomethane	109.9	103.4	109.9			
Liquefaction of CO ₂	30.9	30.9	-			
Liquefaction of CO ₂ logistics	89.0	96.0	-			
Biomethane logistics	242.6	277.8	242.6			
Digestate operations	61.7	62.0	59.2			

Feasibility study: the key project KPIs

		Value					
Index	Unit	Concept 1 – Biomethane from straw (extruded) + liquefied CO₂	Concept 2 – Biomethane from pellets + liquefied CO ₂	Concept 3 – Biomethane from straw (extruded) only			
Investments (CAPEX), including:		13,93	13,87	11,95			
Borrowed funds	million euros	8,36	8,32	7,17			
Own funds		5,57	5,55	4,78			
Operating expenses (OPEX), including:		1,98	2,24	1,89			
Raw materials	million euros/vear	0,97	0,95	0,90			
Operating expenses		0,35	0,53	0,33			
Logistics of target products		0,39	0,42	0,30			
Revenue		4,87	5,15	3,73			
Biomethane in GTS	million euros/year	3,96	4,18	3,57			
Liquefied CO ₂	(excl. VAT)	0,74	0,80	-			
Digestate		0,16	0,17	0,16			
NPV	million euros	6,07	6,25	1,23			
IRR	%	20,6%	20,9%	12,5%			
РІ	-	0,44	0,45	0,10			
Simple payback period	years	5,8	5,7	7,8			
Discounted payback period	years	7,6	7,5	12,1			

Feasibility study: the key project KPIs

		Value					
Index	Unit	Concept 1 – Biomethane from straw (extruded) + liquefied CO₂	Concept 2 – Biomethane from pellets + liquefied CO ₂	Concept 3 – Biomethane from straw (extruded) only			
Project capacity	MW biomethane	4.97	5.31	4.97			
Specific CAPEX	ths. EUR/MW biomethane	2 802	2 614	2 404			
Specific OPEX	EUR/MWh biomethane	45.5	48.1	43.3			
LCOE for 15 years	EUR/MWh biomethane	53.8	55.8	50.4			
Total electricity consumption	MWh/year	7 482	9 973	5 981			
Specific electricity consumption	kWh/MWh _{biomethane}	171.8	214.5	137.4			
Carbon intensity of biomethane	$gCO_{2_{eq}}/MJ_{biomethane}$	-17.33	-14.05	14.94			

Examples for biomethane production from crop residues

Facility/ project name	Feedstock treated in ton/a	Feedstock type	Feedstock (pre)-treatment	CH₄ production, mcm	Project start up	Cost, mill EUR (M€)	Country
Chernozemen	50,000	Cow manure, maize silage, straw	Hammer mill	3.8*	n.a.	n.a.	Bulgaria
Foulum	17,000 (8.5% straw)	Straw, pig manure	Briquetting	>1.7 (biogas)	2012	n.a.	Denmark
VERBIO	40,000	Straw	Mechanical grinding	14	2014	25	Germany
VERBIO	75,000 - 100,000	Corn stover	Grinding and thermal treatment by hot water	68	2021	115	USA
Fuyu county	30,000	Yellow corn straw	Crushing (less than 3 cm) and ensiling with organic acids	~ 4.6*	2016	55 mill yuan (~ 7 M€)	China
Harbin 1	95,000	Corn and rice straw	Fermentation (hydrolysis) and agitation	29**	2019	n.a.	China
Harbin 2	116,000	Corn and rice straw	Fermentation and agitation	45	2022	43	China
Agri biogenic energy park	196,000	Manure, straw, bedding, grass, potato pulp, leaves	Sauter biogas technology	13	2016	n.a.	Denmark
Kværs	800,000	Manure (?) and straw	Thermal and mechanical grinding of straw	20	2022	n.a.	Denmark
Charpentier	17,000	SBP, cereal residuals and energy crops	Mixing pump including shredding unit	1.6	2021	n.a	France
Alliance Berry	80,000	Manure + wheat residuals	Standard treatment	5.4	2022	22	France

Biomethane production potential from crop residues in Ukraine

Totally – 5.2 billion Nm³CH₄ per year

From 10 to 447 mln Nm³CH₄/yr per oblast

Thank you for your attention!

Petro Kucheruk

kucheruk@secbiomass.com

https://uabio.org/

